Cortical responses to thermal pain depend on stimulus size: a functional MRI study.
نویسندگان
چکیده
Cortical activity patterns to thermal painful stimuli of two different sizes were examined in normal volunteers using functional magnetic resonance imaging (fMRI). Seven right-handed subjects were studied when the painful stimulus applied to the right hand fingers covered either 1,074-mm(2)-area large stimulator or 21-mm(2)-area small stimulator. Stimulus temperatures were adjusted to give rise to equivalent moderately painful ratings. fMRI signal increases and decreases were determined for the contralateral parietal and motor areas. When the overall activity in these regions was compared across subjects, increased fMRI activity was observed over more brain volume with the larger stimulator, whereas decreased fMRI activity was seen in more brain volume for the smaller stimulator. The individual subject and group-averaged activity patterns indicated regional specific differences in increased and decreased fMRI activity. The small stimulator resulted in decreased fMRI responses throughout the upper body representation in both primary somatosensory and motor cortices. In contrast, no decreased fMRI signals were seen in the secondary somatosensory cortex and in the insula. In another seven volunteers, the effects of the size of the thermal painful stimulus on vibrotactile thresholds were examined psychophysically. Painful stimuli were delivered to the fingers and vibrotactile thresholds were measured on the arm just distal to the elbow. Consistent with the fMRI results in the primary somatosensory cortex, painful thermal stimuli using the small stimulator increased vibrotactile thresholds on the forearm, whereas similarly painful stimuli using the large stimulator had no effect on forearm vibrotactile thresholds. These results are discussed in relation to the cortical dynamics for pain perception and in relation to the center-surround organization of cortical neurons.
منابع مشابه
Differentiating cortical areas related to pain perception from stimulus identification: temporal analysis of fMRI activity.
In a recent functional magnetic resonance imaging study (fMRI), we reported the cortical areas activated in a thermal painful task and compared the extent of overlap between this cortical network and those activated during a vibrotactile task and a motor task. In the present study we examine the temporal properties of the cortical activations for all three tasks and use linear systems identific...
متن کاملDiffuse Optical Tomography Activation in the Somatosensory Cortex: Specific Activation by Painful vs. Non-Painful Thermal Stimuli
BACKGROUND Pain is difficult to assess due to the subjective nature of self-reporting. The lack of objective measures of pain has hampered the development of new treatments as well as the evaluation of current ones. Functional MRI studies of pain have begun to delineate potential brain response signatures that could be used as objective read-outs of pain. Using Diffuse Optical Tomography (DOT),...
متن کاملConcentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)
Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...
متن کاملThe emotive brain, the noradrenergic system, and cognition
Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...
متن کاملThe emotive brain, the noradrenergic system, and cognition
Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 83 5 شماره
صفحات -
تاریخ انتشار 2000